1
0
mirror of https://github.com/oliverbooth/X10D synced 2024-11-21 21:38:47 +00:00

Merge pull request #84 from oliverbooth/feature/generic_math

Add support for generic math
This commit is contained in:
Oliver Booth 2024-06-12 13:41:40 +01:00 committed by GitHub
commit b8a067130c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
39 changed files with 761 additions and 166 deletions

View File

@ -1,4 +1,4 @@
using NUnit.Framework;
using NUnit.Framework;
using X10D.IO;
namespace X10D.Tests.IO;

View File

@ -1,4 +1,4 @@
using NUnit.Framework;
using NUnit.Framework;
using X10D.IO;
namespace X10D.Tests.IO;

View File

@ -1,4 +1,4 @@
using NUnit.Framework;
using NUnit.Framework;
using X10D.IO;
namespace X10D.Tests.IO;

View File

@ -51,13 +51,29 @@ internal partial class ByteTests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const byte value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const byte value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const byte value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void FactorialShouldBeCorrect()
{

View File

@ -62,13 +62,29 @@ internal partial class Int16Tests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const short value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const short value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const short value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void FactorialShouldBeCorrect()
{

View File

@ -62,13 +62,29 @@ internal partial class Int32Tests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const int value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const int value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const int value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void FactorialShouldBeCorrect()
{

View File

@ -62,13 +62,29 @@ internal partial class Int64Tests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const long value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const long value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const long value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void FactorialShouldBeCorrect()
{

View File

@ -62,13 +62,29 @@ internal partial class SByteTests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given127()
{
const sbyte value = 127; // sbyte.MaxValue. can't use 238 like the other tests
Assert.That(value.DigitalRoot(), Is.EqualTo(1));
Assert.That((-value).DigitalRoot(), Is.EqualTo(1));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const sbyte value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const sbyte value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void FactorialShouldBeCorrect()
{

View File

@ -51,13 +51,29 @@ internal partial class UInt16Tests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const ushort value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const ushort value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const ushort value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void FactorialShouldBeCorrect()
{

View File

@ -1,4 +1,4 @@
using NUnit.Framework;
using NUnit.Framework;
using X10D.Math;
namespace X10D.Tests.Math;
@ -50,11 +50,27 @@ internal partial class UInt32Tests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const uint value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4U));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4U));
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
Assert.That((-value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const uint value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const uint value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-value).DigitalRoot(), Is.EqualTo(9));
}
[Test]

View File

@ -1,4 +1,4 @@
using NUnit.Framework;
using NUnit.Framework;
using X10D.Math;
namespace X10D.Tests.Math;
@ -51,15 +51,31 @@ internal partial class UInt64Tests
}
[Test]
public void DigitalRootShouldBeCorrect()
public void DigitalRoot_ShouldReturn4_Given238()
{
const ulong value = 238;
Assert.That(value.DigitalRoot(), Is.EqualTo(4U));
Assert.That(value.DigitalRoot(), Is.EqualTo(4));
// -ulong operator not defined because it might exceed long.MinValue,
// so instead, cast to long and then negate.
// HAX.
Assert.That((-(long)value).DigitalRoot(), Is.EqualTo(4U));
Assert.That((-(long)value).DigitalRoot(), Is.EqualTo(4));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given9()
{
const ulong value = 9;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-(long)value).DigitalRoot(), Is.EqualTo(9));
}
[Test]
public void DigitalRoot_ShouldReturn9_Given18()
{
const ulong value = 18;
Assert.That(value.DigitalRoot(), Is.EqualTo(9));
Assert.That((-(long)value).DigitalRoot(), Is.EqualTo(9));
}
[Test]

View File

@ -0,0 +1,32 @@
#if NET7_0_OR_GREATER
using NUnit.Framework;
using X10D.Math;
namespace X10D.Tests.Numerics;
[TestFixture]
internal class NumberTests
{
[Test]
public void Sign_ShouldReturn1_GivenPositiveNumber()
{
Assert.That(NumberExtensions.Sign(2), Is.Positive);
Assert.That(NumberExtensions.Sign(2), Is.EqualTo(1));
}
[Test]
public void Sign_Should0_GivenZero()
{
Assert.That(NumberExtensions.Sign(0), Is.Not.Positive);
Assert.That(NumberExtensions.Sign(0), Is.Not.Negative);
Assert.That(NumberExtensions.Sign(0), Is.EqualTo(0));
}
[Test]
public void Sign_ShouldReturnNegative1_GivenNegativeNumber()
{
Assert.That(NumberExtensions.Sign(-2), Is.Negative);
Assert.That(NumberExtensions.Sign(-2), Is.EqualTo(-1));
}
}
#endif

View File

@ -0,0 +1,98 @@
#if NET7_0_OR_GREATER
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics.X86;
using X10D.CompilerServices;
namespace X10D.Collections;
/// <summary>
/// Collection-related extension methods for <see cref="IBinaryInteger{T}" />.
/// </summary>
public static class BinaryIntegerExtensions
{
/// <summary>
/// Unpacks this integer into a boolean list, treating it as a bit field.
/// </summary>
/// <param name="value">The value to unpack.</param>
/// <returns>An array of <see cref="bool" /> with a length equal to the size of <typeparamref name="TInteger" />.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool[] Unpack<TInteger>(this TInteger value)
where TInteger : unmanaged, IBinaryInteger<TInteger>
{
unsafe
{
var buffer = new bool[sizeof(TInteger) * 8];
value.Unpack(buffer);
return buffer;
}
}
/// <summary>
/// Unpacks this integer into a boolean list, treating it as a bit field.
/// </summary>
/// <param name="value">The value to unpack.</param>
/// <param name="destination">When this method returns, contains the unpacked booleans from <paramref name="value" />.</param>
/// <exception cref="ArgumentException"><paramref name="destination" /> is not large enough to contain the result.</exception>
[MethodImpl(CompilerResources.MaxOptimization)]
public static void Unpack<TInteger>(this TInteger value, Span<bool> destination)
where TInteger : unmanaged, IBinaryInteger<TInteger>
{
unsafe
{
if (destination.Length < sizeof(TInteger) * 8)
{
throw new ArgumentException(ExceptionMessages.DestinationSpanLengthTooShort, nameof(destination));
}
}
UnpackInternal(value, destination);
}
[MethodImpl(CompilerResources.MaxOptimization)]
private static void UnpackInternal_Fallback<TInteger>(this TInteger value, Span<bool> destination)
where TInteger : unmanaged, IBinaryInteger<TInteger>
{
unsafe
{
int bitCount = sizeof(TInteger) * 8;
for (var index = 0; index < bitCount; index++)
{
destination[index] = (value & (TInteger.One << index)) != TInteger.Zero;
}
}
}
[ExcludeFromCodeCoverage]
[MethodImpl(CompilerResources.MaxOptimization)]
private static void UnpackInternal<TInteger>(TInteger value, Span<bool> destination)
where TInteger : unmanaged, IBinaryInteger<TInteger>
{
switch (value)
{
case byte valueByte when Sse3.IsSupported:
valueByte.UnpackInternal_Ssse3(destination);
break;
case int valueInt32 when Avx2.IsSupported:
valueInt32.UnpackInternal_Ssse3(destination);
break;
case int valueInt32 when Sse3.IsSupported:
valueInt32.UnpackInternal_Ssse3(destination);
break;
case short valueInt16 when Sse3.IsSupported:
valueInt16.UnpackInternal_Ssse3(destination);
break;
default:
UnpackInternal_Fallback(value, destination);
break;
}
}
}
#endif

View File

@ -1,5 +1,7 @@
#if !NET7_0_OR_GREATER
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Contracts;
#endif
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
@ -14,6 +16,7 @@ public static class ByteExtensions
{
private const int Size = sizeof(byte) * 8;
#if !NET7_0_OR_GREATER
/// <summary>
/// Unpacks this 8-bit unsigned integer into a boolean list, treating it as a bit field.
/// </summary>
@ -51,6 +54,7 @@ public static class ByteExtensions
UnpackInternal_Fallback(value, destination);
}
#endif
[MethodImpl(CompilerResources.MaxOptimization)]
internal static void UnpackInternal_Fallback(this byte value, Span<bool> destination)

View File

@ -1,5 +1,7 @@
#if !NET7_0_OR_GREATER
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Contracts;
#endif
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
@ -14,6 +16,7 @@ public static class Int16Extensions
{
private const int Size = sizeof(short) * 8;
#if !NET7_0_OR_GREATER
/// <summary>
/// Unpacks this 16-bit signed integer into a boolean list, treating it as a bit field.
/// </summary>
@ -51,6 +54,7 @@ public static class Int16Extensions
UnpackInternal_Fallback(value, destination);
}
#endif
[MethodImpl(CompilerResources.MaxOptimization)]
internal static void UnpackInternal_Fallback(this short value, Span<bool> destination)

View File

@ -1,5 +1,7 @@
#if !NET7_0_OR_GREATER
using System.Diagnostics.CodeAnalysis;
using System.Diagnostics.Contracts;
#endif
using System.Runtime.CompilerServices;
using System.Runtime.Intrinsics;
using System.Runtime.Intrinsics.X86;
@ -14,6 +16,7 @@ public static class Int32Extensions
{
private const int Size = sizeof(int) * 8;
#if !NET7_0_OR_GREATER
/// <summary>
/// Unpacks this 32-bit signed integer into a boolean list, treating it as a bit field.
/// </summary>
@ -57,6 +60,7 @@ public static class Int32Extensions
UnpackInternal_Fallback(value, destination);
}
#endif
[MethodImpl(CompilerResources.MaxOptimization)]
internal static void UnpackInternal_Fallback(this int value, Span<bool> destination)

View File

@ -1,3 +1,4 @@
#if !NET7_0_OR_GREATER
using System.Diagnostics.Contracts;
namespace X10D.Collections;
@ -41,3 +42,4 @@ public static class Int64Extensions
}
}
}
#endif

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
using System.Runtime.InteropServices;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
namespace X10D.IO;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
namespace X10D.IO;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
namespace X10D.IO;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
#if !NET5_0_OR_GREATER
using System.Runtime.InteropServices;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
namespace X10D.IO;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
namespace X10D.IO;

View File

@ -1,4 +1,4 @@
using System.Buffers.Binary;
using System.Buffers.Binary;
using System.Diagnostics.Contracts;
namespace X10D.IO;

View File

@ -10,6 +10,7 @@ namespace X10D.Math;
/// </summary>
public static class BigIntegerExtensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current integer.
/// </summary>
@ -42,6 +43,7 @@ public static class BigIntegerExtensions
BigInteger root = BigInteger.Abs(value).Mod(9);
return (int)(root == 0 ? 9 : root);
}
#endif
/// <summary>
/// Returns the factorial of the current 64-bit signed integer.
@ -170,6 +172,7 @@ public static class BigIntegerExtensions
return value * other / value.GreatestCommonFactor(other);
}
#if !NET7_0_OR_GREATER
/// <summary>
/// Performs a modulo operation which supports a negative dividend.
/// </summary>
@ -191,6 +194,7 @@ public static class BigIntegerExtensions
BigInteger r = dividend % divisor;
return r < 0 ? r + divisor : r;
}
#endif
/// <summary>
/// Returns the multiplicative persistence of a specified value.

View File

@ -0,0 +1,101 @@
#if NET7_0_OR_GREATER
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Runtime.CompilerServices;
using X10D.CompilerServices;
namespace X10D.Math;
/// <summary>
/// Math-related extension methods for <see cref="IBinaryInteger{TSelf}" />.
/// </summary>
public static class BinaryIntegerExtensions
{
/// <summary>
/// Returns the number of digits in the current binary integer.
/// </summary>
/// <param name="value">The value whose digit count to compute.</param>
/// <returns>The number of digits in <paramref name="value" />.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static int CountDigits<TInteger>(this TInteger value)
where TInteger : IBinaryInteger<TInteger>
{
if (TInteger.IsZero(value))
{
return 1;
}
return 1 + (int)System.Math.Floor(System.Math.Log10(System.Math.Abs(double.CreateChecked(value))));
}
/// <summary>
/// Computes the digital root of this integer.
/// </summary>
/// <param name="value">The value whose digital root to compute.</param>
/// <returns>The digital root of <paramref name="value" />.</returns>
/// <remarks>The digital root is defined as the recursive sum of digits until that result is a single digit.</remarks>
/// <remarks>
/// <para>The digital root is defined as the recursive sum of digits until that result is a single digit.</para>
/// <para>For example, the digital root of 239 is 5: <c>2 + 3 + 9 = 14</c>, then <c>1 + 4 = 5</c>.</para>
/// </remarks>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static int DigitalRoot<TInteger>(this TInteger value)
where TInteger : IBinaryInteger<TInteger>
{
var nine = TInteger.CreateChecked(9);
TInteger root = TInteger.Abs(value).Mod(nine);
return int.CreateChecked(root == TInteger.Zero ? nine : root);
}
/// <summary>
/// Returns the factorial of the current binary integer.
/// </summary>
/// <param name="value">The value whose factorial to compute.</param>
/// <returns>The factorial of <paramref name="value" />.</returns>
/// <exception cref="ArithmeticException"><paramref name="value" /> is less than 0.</exception>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static long Factorial<TInteger>(this TInteger value)
where TInteger : IBinaryInteger<TInteger>
{
if (value < TInteger.Zero)
{
throw new ArithmeticException(nameof(value));
}
if (value == TInteger.Zero)
{
return 1;
}
var result = 1L;
for (TInteger i = TInteger.One; i <= value; i++)
{
result *= long.CreateChecked(i);
}
return result;
}
/// <summary>
/// Calculates the greatest common factor between the current binary integer, and another binary integer.
/// </summary>
/// <param name="value">The first value.</param>
/// <param name="other">The second value.</param>
/// <returns>The greatest common factor between <paramref name="value" /> and <paramref name="other" />.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static TInteger GreatestCommonFactor<TInteger>(this TInteger value, TInteger other)
where TInteger : IBinaryInteger<TInteger>
{
while (other != TInteger.Zero)
{
(value, other) = (other, value % other);
}
return value;
}
}
#endif

View File

@ -9,6 +9,7 @@ namespace X10D.Math;
/// </summary>
public static class ByteExtensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 8-bit unsigned integer.
/// </summary>
@ -107,6 +108,7 @@ public static class ByteExtensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.

View File

@ -9,6 +9,7 @@ namespace X10D.Math;
/// </summary>
public static class Int16Extensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 16-bit signed integer.
/// </summary>
@ -112,6 +113,7 @@ public static class Int16Extensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
@ -140,6 +142,7 @@ public static class Int16Extensions
return (short)((long)value).LowestCommonMultiple(other);
}
#if !NET7_0_OR_GREATER
/// <summary>
/// Performs a modulo operation which supports a negative dividend.
/// </summary>
@ -161,6 +164,7 @@ public static class Int16Extensions
int r = dividend % divisor;
return (short)(r < 0 ? r + divisor : r);
}
#endif
/// <summary>
/// Returns the multiplicative persistence of a specified value.

View File

@ -9,6 +9,7 @@ namespace X10D.Math;
/// </summary>
public static class Int32Extensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 32-bit signed integer.
/// </summary>
@ -112,6 +113,7 @@ public static class Int32Extensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
@ -140,6 +142,7 @@ public static class Int32Extensions
return (int)((long)value).LowestCommonMultiple(other);
}
#if !NET7_0_OR_GREATER
/// <summary>
/// Performs a modulo operation which supports a negative dividend.
/// </summary>
@ -161,6 +164,7 @@ public static class Int32Extensions
int r = dividend % divisor;
return r < 0 ? r + divisor : r;
}
#endif
/// <summary>
/// Returns the multiplicative persistence of a specified value.

View File

@ -9,6 +9,7 @@ namespace X10D.Math;
/// </summary>
public static class Int64Extensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 64-bit signed integer.
/// </summary>
@ -117,6 +118,7 @@ public static class Int64Extensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
@ -179,6 +181,7 @@ public static class Int64Extensions
return value * other / value.GreatestCommonFactor(other);
}
#if !NET7_0_OR_GREATER
/// <summary>
/// Performs a modulo operation which supports a negative dividend.
/// </summary>
@ -200,6 +203,7 @@ public static class Int64Extensions
long r = dividend % divisor;
return r < 0 ? r + divisor : r;
}
#endif
/// <summary>
/// Returns the multiplicative persistence of a specified value.

View File

@ -1,4 +1,5 @@
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Runtime.CompilerServices;
using X10D.CompilerServices;
@ -12,34 +13,6 @@ public static class MathUtility
private const double DefaultGamma = 2.2;
private const float DefaultGammaF = 2.2f;
/// <summary>
/// Applies a simple bias function to value.
/// </summary>
/// <param name="value">The value to which the bias function will be applied.</param>
/// <param name="bias">The bias value. Valid values range from 0-1.</param>
/// <returns>The biased result.</returns>
/// <remarks>
/// If <paramref name="bias" /> is less than 0.5, <paramref name="value" /> will be shifted downward; otherwise, upward.
/// </remarks>
public static float Bias(float value, float bias)
{
return value / ((1.0f / bias - 2.0f) * (1.0f - value) + 1.0f);
}
/// <summary>
/// Applies a simple bias function to value.
/// </summary>
/// <param name="value">The value to which the bias function will be applied.</param>
/// <param name="bias">The bias value. Valid values range from 0-1.</param>
/// <returns>The biased result.</returns>
/// <remarks>
/// If <paramref name="bias" /> is less than 0.5, <paramref name="value" /> will be shifted downward; otherwise, upward.
/// </remarks>
public static double Bias(double value, double bias)
{
return value / ((1.0 / bias - 2.0) * (1.0 - value) + 1.0);
}
/// <summary>
/// Calculates exponential decay for a value.
/// </summary>
@ -154,6 +127,35 @@ public static class MathUtility
return (alpha - start) / (end - start);
}
#if !NET7_0_OR_GREATER
/// <summary>
/// Applies a simple bias function to value.
/// </summary>
/// <param name="value">The value to which the bias function will be applied.</param>
/// <param name="bias">The bias value. Valid values range from 0-1.</param>
/// <returns>The biased result.</returns>
/// <remarks>
/// If <paramref name="bias" /> is less than 0.5, <paramref name="value" /> will be shifted downward; otherwise, upward.
/// </remarks>
public static float Bias(float value, float bias)
{
return value / ((1.0f / bias - 2.0f) * (1.0f - value) + 1.0f);
}
/// <summary>
/// Applies a simple bias function to value.
/// </summary>
/// <param name="value">The value to which the bias function will be applied.</param>
/// <param name="bias">The bias value. Valid values range from 0-1.</param>
/// <returns>The biased result.</returns>
/// <remarks>
/// If <paramref name="bias" /> is less than 0.5, <paramref name="value" /> will be shifted downward; otherwise, upward.
/// </remarks>
public static double Bias(double value, double bias)
{
return value / ((1.0 / bias - 2.0) * (1.0 - value) + 1.0);
}
/// <summary>
/// Linearly interpolates from one value to a target using a specified alpha.
/// </summary>
@ -190,6 +192,93 @@ public static class MathUtility
return ((1.0 - alpha) * value) + (alpha * target);
}
/// <summary>
/// Performs smooth Hermite interpolation from one value to a target using a specified alpha.
/// </summary>
/// <param name="value">The interpolation source.</param>
/// <param name="target">The interpolation target.</param>
/// <param name="alpha">The interpolation alpha.</param>
/// <returns>The interpolation result.</returns>
public static float SmoothStep(float value, float target, float alpha)
{
alpha = System.Math.Clamp(alpha, 0.0f, 1.0f);
alpha = -2.0f * alpha * alpha * alpha + 3.0f * alpha * alpha;
return target * alpha + value * (1.0f - alpha);
}
/// <summary>
/// Performs smooth Hermite interpolation from one value to a target using a specified alpha.
/// </summary>
/// <param name="value">The interpolation source.</param>
/// <param name="target">The interpolation target.</param>
/// <param name="alpha">The interpolation alpha.</param>
/// <returns>The interpolation result.</returns>
public static double SmoothStep(double value, double target, double alpha)
{
alpha = System.Math.Clamp(alpha, 0.0, 1.0);
alpha = -2.0 * alpha * alpha * alpha + 3.0 * alpha * alpha;
return target * alpha + value * (1.0 - alpha);
}
/// <summary>
/// Converts a value from being a percentage of one range, to being the same percentage in a new range.
/// </summary>
/// <param name="value">The value to convert.</param>
/// <param name="oldMin">The old minimum value.</param>
/// <param name="oldMax">The old maximum value.</param>
/// <param name="newMin">The new minimum value.</param>
/// <param name="newMax">The new maximum value.</param>
/// <returns>The scaled value.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static float ScaleRange(float value, float oldMin, float oldMax, float newMin, float newMax)
{
float oldRange = oldMax - oldMin;
float newRange = newMax - newMin;
float alpha = (value - oldMin) / oldRange;
return (alpha * newRange) + newMin;
}
/// <summary>
/// Converts a value from being a percentage of one range, to being the same percentage in a new range.
/// </summary>
/// <param name="value">The value to convert.</param>
/// <param name="oldMin">The old minimum value.</param>
/// <param name="oldMax">The old maximum value.</param>
/// <param name="newMin">The new minimum value.</param>
/// <param name="newMax">The new maximum value.</param>
/// <returns>The scaled value.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static double ScaleRange(double value, double oldMin, double oldMax, double newMin, double newMax)
{
double oldRange = oldMax - oldMin;
double newRange = newMax - newMin;
double alpha = (value - oldMin) / oldRange;
return (alpha * newRange) + newMin;
}
/// <summary>
/// Returns the incremental sawtooth wave of a given value.
/// </summary>
/// <param name="value">The value to calculate.</param>
/// <returns>The sawtooth wave of the given value.</returns>
public static float Sawtooth(float value)
{
return (value - MathF.Floor(value));
}
/// <summary>
/// Returns the incremental sawtooth wave of a given value.
/// </summary>
/// <param name="value">The value to calculate.</param>
/// <returns>The sawtooth wave of the given value.</returns>
public static double Sawtooth(double value)
{
return (value - System.Math.Floor(value));
}
#endif
/// <summary>
/// Converts a linear value to a gamma-encoded value using a gamma value of <c>2.2</c>.
/// </summary>
@ -272,64 +361,6 @@ public static class MathUtility
return Unsafe.As<bool, int>(ref result);
}
/// <summary>
/// Returns the incremental sawtooth wave of a given value.
/// </summary>
/// <param name="value">The value to calculate.</param>
/// <returns>The sawtooth wave of the given value.</returns>
public static float Sawtooth(float value)
{
return (value - MathF.Floor(value));
}
/// <summary>
/// Returns the incremental sawtooth wave of a given value.
/// </summary>
/// <param name="value">The value to calculate.</param>
/// <returns>The sawtooth wave of the given value.</returns>
public static double Sawtooth(double value)
{
return (value - System.Math.Floor(value));
}
/// <summary>
/// Converts a value from being a percentage of one range, to being the same percentage in a new range.
/// </summary>
/// <param name="value">The value to convert.</param>
/// <param name="oldMin">The old minimum value.</param>
/// <param name="oldMax">The old maximum value.</param>
/// <param name="newMin">The new minimum value.</param>
/// <param name="newMax">The new maximum value.</param>
/// <returns>The scaled value.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static float ScaleRange(float value, float oldMin, float oldMax, float newMin, float newMax)
{
float oldRange = oldMax - oldMin;
float newRange = newMax - newMin;
float alpha = (value - oldMin) / oldRange;
return (alpha * newRange) + newMin;
}
/// <summary>
/// Converts a value from being a percentage of one range, to being the same percentage in a new range.
/// </summary>
/// <param name="value">The value to convert.</param>
/// <param name="oldMin">The old minimum value.</param>
/// <param name="oldMax">The old maximum value.</param>
/// <param name="newMin">The new minimum value.</param>
/// <param name="newMax">The new maximum value.</param>
/// <returns>The scaled value.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static double ScaleRange(double value, double oldMin, double oldMax, double newMin, double newMax)
{
double oldRange = oldMax - oldMin;
double newRange = newMax - newMin;
double alpha = (value - oldMin) / oldRange;
return (alpha * newRange) + newMin;
}
/// <summary>
/// Calculates the sigmoid function for the given input value.
/// </summary>
@ -358,18 +389,71 @@ public static class MathUtility
return 1.0f / (1.0f + System.Math.Exp(-value));
}
#if NET7_0_OR_GREATER
/// <summary>
/// Performs smooth Hermite interpolation from one value to a target using a specified alpha.
/// Applies a simple bias function to value.
/// </summary>
/// <param name="value">The value to which the bias function will be applied.</param>
/// <param name="bias">The bias value. Valid values range from 0-1.</param>
/// <returns>The biased result.</returns>
/// <remarks>
/// If <paramref name="bias" /> is less than 0.5, <paramref name="value" /> will be shifted downward; otherwise, upward.
/// </remarks>
public static TNumber Bias<TNumber>(TNumber value, TNumber bias)
where TNumber : INumber<TNumber>
{
TNumber identity = TNumber.MultiplicativeIdentity;
return value / ((identity / bias - TNumber.CreateChecked(2)) * (identity - value) + identity);
}
/// <summary>
/// Linearly interpolates from one value to a target using a specified alpha.
/// </summary>
/// <param name="value">The interpolation source.</param>
/// <param name="target">The interpolation target.</param>
/// <param name="alpha">The interpolation alpha.</param>
/// <returns>The interpolation result.</returns>
public static float SmoothStep(float value, float target, float alpha)
/// <returns>
/// The interpolation result as determined by <c>(1 - alpha) * value + alpha * target</c>.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static TNumber Lerp<TNumber>(TNumber value, TNumber target, TNumber alpha)
where TNumber : INumber<TNumber>
{
alpha = System.Math.Clamp(alpha, 0.0f, 1.0f);
alpha = -2.0f * alpha * alpha * alpha + 3.0f * alpha * alpha;
return target * alpha + value * (1.0f - alpha);
// rookie mistake: a + t * (b - a)
// "precise" method: (1 - t) * a + t * b
return ((TNumber.MultiplicativeIdentity - alpha) * value) + (alpha * target);
}
/// <summary>
/// Returns the incremental sawtooth wave of a given value.
/// </summary>
/// <param name="value">The value to calculate.</param>
/// <returns>The sawtooth wave of the given value.</returns>
public static TNumber Sawtooth<TNumber>(TNumber value)
where TNumber : IFloatingPoint<TNumber>
{
return (value - TNumber.Floor(value));
}
/// <summary>
/// Converts a value from being a percentage of one range, to being the same percentage in a new range.
/// </summary>
/// <param name="value">The value to convert.</param>
/// <param name="oldMin">The old minimum value.</param>
/// <param name="oldMax">The old maximum value.</param>
/// <param name="newMin">The new minimum value.</param>
/// <param name="newMax">The new maximum value.</param>
/// <returns>The scaled value.</returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static TNumber ScaleRange<TNumber>(TNumber value, TNumber oldMin, TNumber oldMax, TNumber newMin, TNumber newMax)
where TNumber : INumber<TNumber>
{
TNumber oldRange = oldMax - oldMin;
TNumber newRange = newMax - newMin;
TNumber alpha = (value - oldMin) / oldRange;
return (alpha * newRange) + newMin;
}
/// <summary>
@ -379,10 +463,16 @@ public static class MathUtility
/// <param name="target">The interpolation target.</param>
/// <param name="alpha">The interpolation alpha.</param>
/// <returns>The interpolation result.</returns>
public static double SmoothStep(double value, double target, double alpha)
public static TNumber SmoothStep<TNumber>(TNumber value, TNumber target, TNumber alpha)
where TNumber : INumber<TNumber>
{
alpha = System.Math.Clamp(alpha, 0.0, 1.0);
alpha = -2.0 * alpha * alpha * alpha + 3.0 * alpha * alpha;
return target * alpha + value * (1.0 - alpha);
TNumber one = TNumber.One;
TNumber two = one + one;
TNumber three = two + one;
alpha = TNumber.Clamp(alpha, TNumber.Zero, TNumber.One);
alpha = -two * alpha * alpha * alpha + three * alpha * alpha;
return target * alpha + value * (one - alpha);
}
#endif
}

View File

@ -0,0 +1,104 @@
#if NET7_0_OR_GREATER
using System.Diagnostics.Contracts;
using System.Numerics;
using System.Runtime.CompilerServices;
using X10D.CompilerServices;
namespace X10D.Math;
/// <summary>
/// Math-related extension methods for <see cref="INumber{TSelf}" />.
/// </summary>
public static class NumberExtensions
{
/// <summary>
/// Returns a value indicating whether the current value is evenly divisible by 2.
/// </summary>
/// <param name="value">The value whose parity to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is evenly divisible by 2, or <see langword="false" />
/// otherwise.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsEven<TNumber>(this TNumber value)
where TNumber : INumber<TNumber>
{
return value % TNumber.CreateChecked(2) == TNumber.Zero;
}
/// <summary>
/// Returns a value indicating whether the current value is not evenly divisible by 2.
/// </summary>
/// <param name="value">The value whose parity to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is not evenly divisible by 2, or <see langword="false" />
/// otherwise.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsOdd<TNumber>(this TNumber value)
where TNumber : INumber<TNumber>
{
return !value.IsEven();
}
/// <summary>
/// Performs a modulo operation which supports a negative dividend.
/// </summary>
/// <param name="dividend">The dividend.</param>
/// <param name="divisor">The divisor.</param>
/// <returns>The result of <c>dividend mod divisor</c>.</returns>
/// <remarks>
/// The <c>%</c> operator (commonly called the modulo operator) in C# is not defined to be modulo, but is instead
/// remainder. This quirk inherently makes it difficult to use modulo in a negative context, as <c>x % y</c> where x is
/// negative will return a negative value, akin to <c>-(x % y)</c>, even if precedence is forced. This method provides a
/// modulo operation which supports negative dividends.
/// </remarks>
/// <author>ShreevatsaR, https://stackoverflow.com/a/1082938/1467293</author>
/// <license>CC-BY-SA 2.5</license>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static TNumber Mod<TNumber>(this TNumber dividend, TNumber divisor)
where TNumber : INumber<TNumber>
{
TNumber r = dividend % divisor;
return r < TNumber.Zero ? r + divisor : r;
}
/// <summary>
/// Returns an integer that indicates the sign of this number.
/// </summary>
/// <param name="value">A signed number.</param>
/// <returns>
/// A number that indicates the sign of <paramref name="value" />, as shown in the following table.
///
/// <list type="table">
/// <listheader>
/// <term>Return value</term>
/// <description>Meaning</description>
/// </listheader>
///
/// <item>
/// <term>-1</term>
/// <description><paramref name="value" /> is less than zero.</description>
/// </item>
/// <item>
/// <term>0</term>
/// <description><paramref name="value" /> is equal to zero.</description>
/// </item>
/// <item>
/// <term>1</term>
/// <description><paramref name="value" /> is greater than zero.</description>
/// </item>
/// </list>
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static int Sign<TNumber>(this TNumber value)
where TNumber : INumber<TNumber>
{
return TNumber.Sign(value);
}
}
#endif

View File

@ -10,6 +10,7 @@ namespace X10D.Math;
[CLSCompliant(false)]
public static class SByteExtensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 8-bit signed integer.
/// </summary>
@ -113,6 +114,7 @@ public static class SByteExtensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
@ -141,6 +143,7 @@ public static class SByteExtensions
return (sbyte)((long)value).LowestCommonMultiple(other);
}
#if !NET7_0_OR_GREATER
/// <summary>
/// Performs a modulo operation which supports a negative dividend.
/// </summary>
@ -162,6 +165,7 @@ public static class SByteExtensions
int r = dividend % divisor;
return (sbyte)(r < 0 ? r + divisor : r);
}
#endif
/// <summary>
/// Returns the multiplicative persistence of a specified value.

View File

@ -10,6 +10,7 @@ namespace X10D.Math;
[CLSCompliant(false)]
public static class UInt16Extensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 16-bit signed integer.
/// </summary>
@ -94,20 +95,6 @@ public static class UInt16Extensions
return (value & 1) == 0;
}
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
/// </summary>
/// <param name="value">The value whose primality to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is prime; otherwise, <see langword="false" />.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsPrime(this ushort value)
{
return ((ulong)value).IsPrime();
}
/// <summary>
/// Returns a value indicating whether the current value is not evenly divisible by 2.
/// </summary>
@ -122,6 +109,21 @@ public static class UInt16Extensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
/// </summary>
/// <param name="value">The value whose primality to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is prime; otherwise, <see langword="false" />.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsPrime(this ushort value)
{
return ((ulong)value).IsPrime();
}
/// <summary>
/// Calculates the lowest common multiple between the current 16-bit unsigned integer, and another 16-bit unsigned

View File

@ -10,6 +10,7 @@ namespace X10D.Math;
[CLSCompliant(false)]
public static class UInt32Extensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 32-bit unsigned integer.
/// </summary>
@ -94,20 +95,6 @@ public static class UInt32Extensions
return (value & 1) == 0;
}
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
/// </summary>
/// <param name="value">The value whose primality to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is prime; otherwise, <see langword="false" />.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsPrime(this uint value)
{
return ((ulong)value).IsPrime();
}
/// <summary>
/// Returns a value indicating whether the current value is not evenly divisible by 2.
/// </summary>
@ -122,6 +109,21 @@ public static class UInt32Extensions
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
/// </summary>
/// <param name="value">The value whose primality to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is prime; otherwise, <see langword="false" />.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsPrime(this uint value)
{
return ((ulong)value).IsPrime();
}
/// <summary>
/// Calculates the lowest common multiple between the current 32-bit unsigned integer, and another 32-bit unsigned

View File

@ -10,6 +10,7 @@ namespace X10D.Math;
[CLSCompliant(false)]
public static class UInt64Extensions
{
#if !NET7_0_OR_GREATER
/// <summary>
/// Returns the number of digits in the current 64-bit unsigned integer.
/// </summary>
@ -99,6 +100,22 @@ public static class UInt64Extensions
return (value & 1) == 0;
}
/// <summary>
/// Returns a value indicating whether the current value is not evenly divisible by 2.
/// </summary>
/// <param name="value">The value whose parity to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is not evenly divisible by 2, or <see langword="false" />
/// otherwise.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsOdd(this ulong value)
{
return !value.IsEven();
}
#endif
/// <summary>
/// Returns a value indicating whether the current value is a prime number.
/// </summary>
@ -132,21 +149,6 @@ public static class UInt64Extensions
return true;
}
/// <summary>
/// Returns a value indicating whether the current value is not evenly divisible by 2.
/// </summary>
/// <param name="value">The value whose parity to check.</param>
/// <returns>
/// <see langword="true" /> if <paramref name="value" /> is not evenly divisible by 2, or <see langword="false" />
/// otherwise.
/// </returns>
[Pure]
[MethodImpl(CompilerResources.MaxOptimization)]
public static bool IsOdd(this ulong value)
{
return !value.IsEven();
}
/// <summary>
/// Calculates the lowest common multiple between the current 64-bit unsigned integer, and another 64-bit unsigned
/// integer.

View File

@ -32,7 +32,7 @@ public static class Int16Extensions
value++;
}
return value.Mod(4) == 0 && (value.Mod(100) != 0 || value.Mod(400) == 0);
return value.Mod((short)4) == 0 && (value.Mod((short)100) != 0 || value.Mod((short)400) == 0);
}
/// <summary>

View File

@ -33,7 +33,7 @@ public static class SByteExtensions
value++;
}
return value.Mod(4) == 0 && value.Mod(100) != 0; // mod 400 not required, sbyte.MaxValue is 127 anyway
return value.Mod((sbyte)4) == 0 && value.Mod((sbyte)100) != 0; // mod 400 not required, sbyte.MaxValue is 127 anyway
}
/// <summary>