mirror of
https://github.com/oliverbooth/X10D
synced 2024-11-09 23:45:42 +00:00
feat: add MathUtility.Sigmoid (#60)
This commit is contained in:
parent
654d5b5b08
commit
c7370c39fd
@ -15,13 +15,13 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
|
||||
- X10D: Added `IntrinsicExtensions` and `IntrinsicUtility` which offer methods for vectors in `System.Runtime.Instrinsics`. (#70)
|
||||
- X10D: Added `MathUtility.Bias(float, float)` and `MathUtility.Bias(double, double)`.
|
||||
- X10D: Added `MathUtility.ExponentialDecay(float, float, float)` and `MathUtility.ExponentialDecay(double, double, double)`.
|
||||
- X10D: Added `MathUtility.InverseLerp(float, float, float)` and `MathUtility.InverseLerp(double, double, double)`
|
||||
- X10D: Added `MathUtility.InverseLerp(float, float, float)` and `MathUtility.InverseLerp(double, double, double)`.
|
||||
- X10D: Added `MathUtility.ScaleRange(float, float, float, float, float)`
|
||||
and `MathUtility.ScaleRange(double, double, double, double, double)`
|
||||
- X10D:
|
||||
- X10D: Added `MathUtility.Sigmoid(float)` and `MathUtility.Sigmoid(double)`.
|
||||
- X10D: Added `MathUtility.SmoothStep(float, float, float)` and `MathUtility.SmoothStep(double, double, double)`.
|
||||
Added `Circle`, `CircleF`, `Cuboid`, `Ellipse`, `EllipseF`, `Line3D`, `Line`, `LineF`, `Polygon`, `PolygonF`, `Polyhedron`,
|
||||
and `Sphere`, to complement System.Drawing structs such as `Point` and `Rectangle`
|
||||
- X10D: Added `Circle`, `CircleF`, `Cuboid`, `Ellipse`, `EllipseF`, `Line3D`, `Line`, `LineF`, `Polygon`, `PolygonF`, `Polyhedron`,
|
||||
and `Sphere`, to complement System.Drawing structs such as `Point` and `Rectangle`.
|
||||
- X10D: Added `Color.Deconstruct()` - with optional alpha parameter.
|
||||
- X10D: Added `Color.GetClosestConsoleColor()`.
|
||||
- X10D: Added `DateTime.GetIso8601WeekOfYear()` and `DateTimeOffset.GetIso8601WeekOfYear()`.
|
||||
|
@ -177,6 +177,95 @@ public class MathUtilityTests
|
||||
Assert.AreEqual(7.5f, result);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsExpectedValue_UsingDouble()
|
||||
{
|
||||
const double input = 0.5f;
|
||||
const double expected = 0.622459331f;
|
||||
|
||||
double actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsExpectedValue_UsingSingle()
|
||||
{
|
||||
const float input = 0.5f;
|
||||
const float expected = 0.622459331f;
|
||||
|
||||
float actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6f);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsZeroWhenInputIsNegativeInfinity_UsingDouble()
|
||||
{
|
||||
const double input = double.NegativeInfinity;
|
||||
const double expected = 0f;
|
||||
|
||||
double actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsZeroWhenInputIsNegativeInfinity_UsingSingle()
|
||||
{
|
||||
const float input = float.NegativeInfinity;
|
||||
const float expected = 0f;
|
||||
|
||||
float actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6f);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsOneWhenInputIsPositiveInfinity_UsingDouble()
|
||||
{
|
||||
const double input = double.PositiveInfinity;
|
||||
const double expected = 1f;
|
||||
|
||||
double actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsOneWhenInputIsPositiveInfinity_UsingSingle()
|
||||
{
|
||||
const float input = float.PositiveInfinity;
|
||||
const float expected = 1f;
|
||||
|
||||
float actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6f);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsZeroPointFiveWhenInputIsZero_UsingDouble()
|
||||
{
|
||||
const double input = 0f;
|
||||
const double expected = 0.5f;
|
||||
|
||||
double actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6);
|
||||
}
|
||||
|
||||
[TestMethod]
|
||||
public void Sigmoid_ReturnsZeroPointFiveWhenInputIsZero_UsingSingle()
|
||||
{
|
||||
const float input = 0f;
|
||||
const float expected = 0.5f;
|
||||
|
||||
float actual = MathUtility.Sigmoid(input);
|
||||
|
||||
Assert.AreEqual(expected, actual, 1e-6f);
|
||||
}
|
||||
|
||||
|
||||
[TestMethod]
|
||||
public void SmoothStep_ShouldReturnHigher_GivenAlpha1()
|
||||
{
|
||||
|
@ -333,6 +333,34 @@ public static class MathUtility
|
||||
return (alpha * newRange) + newMin;
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculates the sigmoid function for the given input value.
|
||||
/// </summary>
|
||||
/// <param name="value">The input value for which to calculate the sigmoid function.</param>
|
||||
/// <returns>The result of applying the sigmoid function to the input value.</returns>
|
||||
/// <remarks>
|
||||
/// The sigmoid function is a commonly used activation function in artificial neural networks and logistic regression. It
|
||||
/// maps any real-valued number to a value between 0 and 1.
|
||||
/// </remarks>
|
||||
public static float Sigmoid(float value)
|
||||
{
|
||||
return 1.0f / (1.0f + MathF.Exp(-value));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Calculates the sigmoid function for the given input value.
|
||||
/// </summary>
|
||||
/// <param name="value">The input value for which to calculate the sigmoid function.</param>
|
||||
/// <returns>The result of applying the sigmoid function to the input value.</returns>
|
||||
/// <remarks>
|
||||
/// The sigmoid function is a commonly used activation function in artificial neural networks and logistic regression. It
|
||||
/// maps any real-valued number to a value between 0 and 1.
|
||||
/// </remarks>
|
||||
public static double Sigmoid(double value)
|
||||
{
|
||||
return 1.0f / (1.0f + System.Math.Exp(-value));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Performs smooth Hermite interpolation from one value to a target using a specified alpha.
|
||||
/// </summary>
|
||||
|
Loading…
Reference in New Issue
Block a user